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Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. In triangle ABC, M is the midpoint of the side BC and E is a point on the side AC

distinct from A and C. Suppose that BE ≥ 2AM . Prove that one of the angles of
triangle ABC is obtuse. (5 points)

2. There are 2018 people living on an island. Each person is one of: a knight, a knave,
or a neither-knight-nor-knave. A knight always tells the truth, and a knave always lies.
A neither-knight-nor-knave answers as the majority of people answered before him, or
randomly, in the case that the numbers of “Yes” and “No” answers are equal. Everyone
on the island knows which of the three possibilities each person is. One day all 2018
inhabitants of the island were arranged in a line and each in turn answered “Yes” or
“No” to the same question:

Are there more knights than knaves on the island?

The total number of “Yes” answers was 1009 and everyone heard all the previous answers.
Determine the maximum possible number of neither-knight-nor-knave people among the
inhabitants of the island. (6 points)

3. One needs to write a number of the form 77 . . . 7, in base ten, using only 7s, the operations
of addition, subtraction, multiplication, division, and raising to a power, and brackets.
One can also use any number of 7s together with no operations between them. For the
number 77 the shortest way to write it is to simply write 77. Does there exist a number
of the form 77 . . . 7 that can be written under the rules above using a smaller number of
7s than in its base ten notation? (8 points)

4. A 7 × 7 grid board can be empty or can contain an invisible 2 × 2 ship that is located
with its edges along the grid lines. A detector placed in a square of the board shows
whether or not the square is occupied by the ship. All the detectors on the board are to
be switched on at the same time. What is the smallest number of detectors needed to
determine if the ship is on the board and, if so, exactly where it is located? (8 points)
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5. Let ABCD be an isosceles trapezium (with AD parallel to BC), that is inscribed in a
circle with centre O. The line BO and side AD meet at the point E. Suppose that O1

and O2 are the circumcentres of the triangles ABE and DBE, respectively. Prove that
the points O1, O2, O and C are concyclic. (8 points)

6. Prove that

(a) any integer of the form 3k− 2, where k is an integer, can be represented as the sum
of a perfect square and two perfect cubes of some integers. (7 points)

(b) any integer can be represented as the sum of a perfect square and three perfect cubes
of some integers. (3 points)

7. There are n ≥ 2 towns in some virtual world. Some pairs of towns are connected by
roads, but there is no more than one road between any pair of towns. Any town can be
reached from any other town via the roads. One can change a road only in a town. The
world is called simple, if it is impossible to start at some town and to return to that same
town without using the same road twice. Otherwise the world is called complex. Petya
and Vasya play the following game:

At the start Petya chooses a single direction on each road so that the road can
be used in the chosen direction only and places a virtual tourist in one of the
towns. Then Petya moves the tourist along a road in the permitted direction
to a neighbouring town. On his turn, Vasya changes the permitted direction
on one of the inbound or outbound roads of the town where the tourist is at
the moment. Vasya wins if Petya cannot make a move.

Prove that

(a) in a simple world Petya can avoid defeat no matter how Vasya plays. (5 points)

(b) in a complex world Vasya can win for sure no matter how Petya plays. (7 points)



A Level Junior Paper Solutions

Prepared by Oleksiy Yevdokimov and Greg Gamble

1. Solution 1. Let X be the midpoint of the line segment EC. Then, MX is a
middle line of triangle BEC and BE = 2MX. Consider triangle AMC. Since the
cevian MX must be shorter than at least one of the sides of triangle AMC that
contain the vertex M , and MX ≥ MA, we conclude that MX < MC. Hence,
MA < MC and so the point A is located inside the circle with diameter BC. So
6 BAC is obtuse.
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Solution 2. Suppose that the side BC of triangle ABC is the longest, but 6 BAC
is not obtuse. Then, the circumcentre O of triangle ABC either lies on BC and
coincides with M (in the case 6 BAC = 90◦) or O is located on the same side as A
with respect to BC (in the case 6 BAC < 90◦). So we have

2AM ≥ 2AO = OB + OC ≥ BC > BE,

contradicting BE ≤ 2AM . Hence, 6 BAC is obtuse.
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2. The maximum possible number of neither-knight-nor-knaves among the inhabitants
of the island is 1009. First, we make an estimation and show that the maximum
number of neither-knight-nor-knave is bounded above by 1009 and then give an
example to show that 1009 neither-knight-nor-knaves is possible. Note that there
were 1009 “No” answers in all, since there were 1009 “Yes” answers in all. Let m
be the smaller of the number of “Yes” answers and the number of “No” answers
at a given stage. When giving his answer each neither-knight-nor-knave cannot
increase m. Thus at each stage at least m of those who have given their answer
are not neither-knight-nor-knaves. Since after all the inhabitants have answered
m = 1009, at least 1009 of the inhabitants are not neither-knight-nor-knaves.
Hence the number of neither-knight-nor-knaves is at most 2018− 1009 = 1009.



So we are left now with showing that the bound of 1009 neither-knight-nor-knaves
is possible. Indeed, the first 1009 inhabitants in the line could be neither-knight-
nor-knaves who also answer “No”, followed by 1009 knights who all answer “Yes”.

Thus, the maximum possible number of neither-knight-nor-knaves is 1009.

Note. Other examples with 1009 neither-knight-nor-knaves exist. There is the
complementary possibility where the first 1009 inhabitants in line are neither-
knight-nor-knaves who all answer “Yes”, followed by 1009 knaves who all answer
“No”. Another possibility is that 1008 knights (who say “Yes”) are interspersed
among 1008 neither-knight-nor-knaves in such a way that they still say “No”, e.g.
every second person in line is a knight, followed by a neither-knight-nor-knave who
(randomly) says “Yes”, followed by a knave who says “No”.

3. Solution 1. Yes, it is possible, via the following observations.

777 . . . 7︸ ︷︷ ︸
n digits

= 7 · 111 . . . 1︸ ︷︷ ︸
n digits

=
7 · (10n − 1)

9

=
7 · 10n − 7

9

=
7 ·
(
77−7
7

)n
− 7

7 + 7+7
7

,

where, for example, we can use n = 77 or n = 14 = 7 + 7. For n = 77, the first
expression has 77 7s, whereas the final expression has only twelve 7s.

Note. A 2-digit number (77 − 7)/7 = 10 was used in the representation above.
Replacing (77− 7)/7 with 7 + (7 + 7 + 7)/7 we can get an example with more 7s,
but without any 2-digit number; just with a 1-digit number 7 involved.

Solution 2 by Budun Budunov. Since 77 . . . 7︸ ︷︷ ︸
2n digits

= 77 . . . 7︸ ︷︷ ︸
n digits

·(10n+1), we obtain

77 . . . 7︸ ︷︷ ︸
28 digits

= 77 . . . 7︸ ︷︷ ︸
14 digits

·
((

77− 7

7

)7+7

+
7

7

)
.

Note. Any number of the form 77 . . . 7 with more than one 7 (e.g. 77 and so on)
can be used as the exponent in both this solution and Solution 1.

4. Solution 1 by William Steinberg. We will show that the smallest number of
detectors needed to both determine if a ship is on the board and, if so, determine
its exact location, is 16. Our strategy is to first determine a lower bound, and
then provide an example to show the lower bound is achievable and hence is the
required minimum.

First we show that in every 2× 3 subgrid we need at least 2 detectors.
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Without loss of generality, orientate the subgrid so that it has 2 rows and 3 columns
as shown. First suppose one detector is enough. If the detector is in a corner cell,
without loss of generality the cell numbered 1, then a ship can take up the remaining
2 columns undetected. If the detector is in a middle column cell, without loss of
generality in cell 2, then a ship can be detected but could take up the first two
columns or the last 2 columns, i.e. its location cannot be exactly determined. Thus
in every 2× 3 subgrid we need at least 2 detectors.

As shown in the diagram below left the board can be divided into eight 2 × 3
rectangles and one square in the centre. For a ship to be detected and located with
certainty, we require at least 2 detectors in each 2× 3 rectangle. Thus, at least 16
detectors are needed.
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The diagram above right shows an example with 16 detectors (indicated by ×s)
in the cells shown. If a ship is present it must intersect one of the 2× 2 blocks of
crossed squares. Indeed, a ship must intersect exactly one crossed square, exactly
two crossed squares, or exactly four crossed squares. In each case the precise
location of the ship or its absence can be determined.

Alternative detector configuration. The diagram below shows another exam-
ple with 16 detectors.
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Again, if a ship is present it must intersect at least one of the crossed squares. In-
deed, a ship must intersect exactly one crossed square, exactly two crossed squares,
or exactly three crossed squares. In each case the precise location of the ship or
its absence can be determined.

Note 1. There are no other ways where 16 detectors can be located on the board.

Note 2. Even if it is known that the ship is definitely on the board, i.e. the board
is not empty, 16 detectors are still needed to determine the location of the ship.



5. Solution 1. Let K be the midpoint of AB. Let Γ, Γ1 and Γ2 be the circumcircles
of ABCD, ABE and DBE, respectively, and note they have centres O, O1 and
O2, respectively. Since Γ and Γ1 intersect at points A and B, the line OO1 is the
perpendicular bisector of AB. Similarly, OO2 is the perpendicular bisector of BD,
and O1O2 is the perpendicular bisector of BE. Exploiting the axis of symmetry
property of perpendicular bisectors, we have

6 BO1O2 = 1
2
6 BO1E, since O1O2 is an axis of symmetry

= 6 BAE, since half central angle equals inscribed angle, in Γ1

= 6 BAD, same angle

= 1
2
6 BOD, since inscribed angle equals half central angle, in Γ

= 6 BOO2, since OO2 is an axis of symmetry.

Thus, quadrilateral BO1OO2 is cyclic.

6 KO1B = 1
2
6 AO1B, since KO1 is perpendicular bisector of AB

= 6 AEB, since half central angle equals inscribed angle in Γ

= 6 CBE, alternate angles, since AE ‖ BC

= 6 CBO, same angle

= 6 BCO, since BOC is isosceles, legs OB, OC being radii of Γ.

Thus, quadrilateral BO1OC is cyclic, since 6 KO1B is the exterior angle oppo-
site 6 BCO. But, the circumcircles of BO1OO2 and BO1OC are the same circle,
since points B, O1, O are common and three noncollinear points are sufficient to
determine a circle. Hence, points O1, O2, O and C are concyclic.
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Solution 2. As in Solution 1., let K be the midpoint of AB; and let Γ, Γ1 and
Γ2 be the circumcircles of ABCD, ABE and DBE, respectively, whose centres
are O, O1 and O2, respectively; and deduce that OO1, OO2 and O1O2 are the
perpendicular bisectors of AB, BD and BE, respectively. Also, let X be the point
of intersection of BD and OO2, and let Y be the point of intersection of BE and
O1O2. We claim O1 lies on AC. Indeed,

6 O1AE = 1
2
(180◦ − 6 AO1E), since triangle AO1E is isosceles

= 90◦ − 1
2
6 AO1E

= 90◦ − 6 ABE, since half central angle equals inscribed angle, in Γ1

= 90◦ − 6 KBO, same angle

= 6 KOB, since 6 BKO = 90◦ in triangle KOB

= 1
2
6 AOB, since OO1 is an axis of symmetry

= 6 ADB, since half central angle equals inscribed angle, in Γ

= 6 CAD, since ABCD is an isosceles trapezium.

Hence, O1 lies on AC. Therefore,

6 OCO1 = 6 OCA, same angle

= 6 OBD, since ABCD is an isosceles trapezium

= 6 OBX, same angle

= 90◦ − 6 BOX, since 6 BXO = 90◦ in triangle BOX

= 90◦ − 6 Y OO2, same angle

= 6 Y O2O, since 6 O2Y O = 90◦ in triangle Y O2O1

= 6 OO2O1.

and hence, OCO2O1 is cyclic, i.e. points O1, O2, O and C are concyclic.
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Note. The fact that O1 lies on AC, as proved in Solution 2., can be proven in
another way. Let diagonal AC intersect the circumcircle of triangle OAE at point
P . We show that P coincides with O1. Firstly,

6 PEA = 6 BEA− 6 OEP

= 6 EBC − 6 OEP, since 6 BEA = 6 EBC are alternate angles

= 6 OCB − 6 OEP, since 6 EBC = 6 OBC = 6 OCB

= 6 OCB − 6 OCP, since 6 OEP = 6 OAP = 6 OCP

= 6 ACB

= 6 CAE, alternate angles

= 6 PAE, same angle.

Hence, triangle APE is isosceles, and so, PA = PE.

Since 6 POB is the exterior angle opposite 6 PAE in cyclic quadrilateral PAOE,

6 BOP = 6 PAE = 6 PEA = 6 POA.

Thus, with common side PO, and OB = OA (radii of Γ), triangles POB and POA
are congruent (by the SAS Rule).

Hence, PB = PA = PE, which means P is the circumcentre of triangle ABE and
so P = O1.
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6. (a) The required representation follows from the following identity,

3k − 2 = k3 − (k + 3)3 + (3k + 5)2 = k3 + (−(k + 3))3 + (3k + 5)2.

(b) First, we bring any given integer to the form of 3k − 2 by subtracting an
appropriate perfect cube, which can be 0, 1 or −1, and then apply the identity
in (a).

7. Consider a graph, where vertices are towns and edges are roads.

(a) For a simple world, the graph is a tree, i.e. a connected simple graph without
cycles (a cycle is a sequence of distinct adjacent vertices that begins and ends
at the same vertex). Petya can choose any vertex. From any other vertex
there exists exactly one path to the chosen vertex. On each path to the chosen
town, Petya chooses all directions towards the chosen town. At the start, Petya



moves the tourist to the chosen town (from a neighbouring one). All roads
to the chosen town are inbound. On his turn, Vasya changes the permitted
direction of one of the roads. Then Petya moves the tourist along the road for
which Vasya has changed the direction. All the roads to the town the tourist
has just arrived at are inbound. Vasya can change the permitted direction of
one of the roads again and Petya moves the tourist to a neighbouring town
along that road. All roads to the new town the tourist has just arrived at are
inbound again and the situation is repeated again and again. So Petya can
always make a move and avoid defeat in a simple world no matter how Vasya
plays.

(b) For a complex world, the graph is a connected graph with cycles. We use
induction on the number of vertices (towns). The base case is a simple cy-
cle. Denote vertices (towns) by A1, A2, . . . . Assume that in a simple cycle
A1A2 . . . An all directions are arranged in some way and the tourist arrives
at A2 from A1. Then Vasya will change the direction of the edge the tourist
hasn’t used yet (i.e. in front of the tourist). In other words, Vasya’s strategy
should be to disallow the tourist from moving back. Assume the tourist has
been able to get to A1. Then Vasya changes the direction from outbound to
inbound in front of the tourist so that no moves are available. Vasya wins.

Now, we consider the inductive step. The graph is not a simple cycle. Choose
a cycle of the minimal length in the graph. Call the cycle with the minimal
length C. C is a simple graph and doesn’t contain any edge inside itself. So
there are vertices outside of C. Choose a vertex V of maximum distance from
C. Denote a graph without V by G. G is a connected graph and G contains a
cycle. According to the inductive assumption, Vasya has winning strategy in
G for any direction of edges in G. Thus, inside G Vasya follows his winning
strategy. Since Petya loses in G, sooner or later the tourist will be forced
to move to V . Then, Vasya will change the inbound edge (road) the tourist
moved into V to be the outbound one. The tourist will depart from V and
Vasya should make any acceptable move in G next. So the tourist is in G
again, where Vasya has winning strategy. That means the tourist sooner or
later will be forced to move to V again and the number of inbound edges to V
be decreased every time when the tourist comes back to V . Since the number
of edges (roads) to V is finite, the tourist finally will be unable to get to V and
lose inevitably inside G anyway.

Thus, Vasya can win for sure in a complex world no matter how Petya plays.


