INTERNATIONAL MATHEMATICS TOURNAMENT OF TOWNS

JUNIOR PAPER: YEARS 8,9,10

Tournament 40, Northern Autumn 2018 (A Level)
© 2018 Australian Mathematics Trust
Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. In triangle $A B C, M$ is the midpoint of the side $B C$ and E is a point on the side $A C$ distinct from A and C. Suppose that $B E \geq 2 A M$. Prove that one of the angles of triangle $A B C$ is obtuse.
(5 points)
2. There are 2018 people living on an island. Each person is one of: a knight, a knave, or a neither-knight-nor-knave. A knight always tells the truth, and a knave always lies. A neither-knight-nor-knave answers as the majority of people answered before him, or randomly, in the case that the numbers of "Yes" and "No" answers are equal. Everyone on the island knows which of the three possibilities each person is. One day all 2018 inhabitants of the island were arranged in a line and each in turn answered "Yes" or "No" to the same question:

Are there more knights than knaves on the island?
The total number of "Yes" answers was 1009 and everyone heard all the previous answers. Determine the maximum possible number of neither-knight-nor-knave people among the inhabitants of the island.
(6 points)
3. One needs to write a number of the form $77 \ldots 7$, in base ten, using only 7 s , the operations of addition, subtraction, multiplication, division, and raising to a power, and brackets. One can also use any number of 7s together with no operations between them. For the number 77 the shortest way to write it is to simply write 77 . Does there exist a number of the form $77 \ldots 7$ that can be written under the rules above using a smaller number of 7 s than in its base ten notation?
4. A 7×7 grid board can be empty or can contain an invisible 2×2 ship that is located with its edges along the grid lines. A detector placed in a square of the board shows whether or not the square is occupied by the ship. All the detectors on the board are to be switched on at the same time. What is the smallest number of detectors needed to determine if the ship is on the board and, if so, exactly where it is located? (8 points)

Continued over the page

5. Let $A B C D$ be an isosceles trapezium (with $A D$ parallel to $B C$), that is inscribed in a circle with centre O. The line $B O$ and side $A D$ meet at the point E. Suppose that O_{1} and O_{2} are the circumcentres of the triangles $A B E$ and $D B E$, respectively. Prove that the points O_{1}, O_{2}, O and C are concyclic.

6. Prove that

(a) any integer of the form $3 k-2$, where k is an integer, can be represented as the sum of a perfect square and two perfect cubes of some integers.
(b) any integer can be represented as the sum of a perfect square and three perfect cubes of some integers.
7. There are $n \geq 2$ towns in some virtual world. Some pairs of towns are connected by roads, but there is no more than one road between any pair of towns. Any town can be reached from any other town via the roads. One can change a road only in a town. The world is called simple, if it is impossible to start at some town and to return to that same town without using the same road twice. Otherwise the world is called complex. Petya and Vasya play the following game:

At the start Petya chooses a single direction on each road so that the road can be used in the chosen direction only and places a virtual tourist in one of the towns. Then Petya moves the tourist along a road in the permitted direction to a neighbouring town. On his turn, Vasya changes the permitted direction on one of the inbound or outbound roads of the town where the tourist is at the moment. Vasya wins if Petya cannot make a move.

Prove that
(a) in a simple world Petya can avoid defeat no matter how Vasya plays.
(b) in a complex world Vasya can win for sure no matter how Petya plays.

A Level Junior Paper Solutions

Prepared by Oleksiy Yevdokimov and Greg Gamble

1. Solution 1. Let X be the midpoint of the line segment $E C$. Then, $M X$ is a middle line of triangle $B E C$ and $B E=2 M X$. Consider triangle $A M C$. Since the cevian $M X$ must be shorter than at least one of the sides of triangle $A M C$ that contain the vertex M, and $M X \geq M A$, we conclude that $M X<M C$. Hence, $M A<M C$ and so the point A is located inside the circle with diameter $B C$. So $\angle B A C$ is obtuse.

Solution 2. Suppose that the side $B C$ of triangle $A B C$ is the longest, but $\angle B A C$ is not obtuse. Then, the circumcentre O of triangle $A B C$ either lies on $B C$ and coincides with M (in the case $\angle B A C=90^{\circ}$) or O is located on the same side as A with respect to $B C$ (in the case $\angle B A C<90^{\circ}$). So we have

$$
2 A M \geq 2 A O=O B+O C \geq B C>B E
$$

contradicting $B E \leq 2 A M$. Hence, $\angle B A C$ is obtuse.

2. The maximum possible number of neither-knight-nor-knaves among the inhabitants of the island is 1009. First, we make an estimation and show that the maximum number of neither-knight-nor-knave is bounded above by 1009 and then give an example to show that 1009 neither-knight-nor-knaves is possible. Note that there were 1009 "No" answers in all, since there were 1009 "Yes" answers in all. Let m be the smaller of the number of "Yes" answers and the number of "No" answers at a given stage. When giving his answer each neither-knight-nor-knave cannot increase m. Thus at each stage at least m of those who have given their answer are not neither-knight-nor-knaves. Since after all the inhabitants have answered $m=1009$, at least 1009 of the inhabitants are not neither-knight-nor-knaves. Hence the number of neither-knight-nor-knaves is at most $2018-1009=1009$.

So we are left now with showing that the bound of 1009 neither-knight-nor-knaves is possible. Indeed, the first 1009 inhabitants in the line could be neither-knight-nor-knaves who also answer "No", followed by 1009 knights who all answer "Yes".

Thus, the maximum possible number of neither-knight-nor-knaves is 1009.
Note. Other examples with 1009 neither-knight-nor-knaves exist. There is the complementary possibility where the first 1009 inhabitants in line are neither-knight-nor-knaves who all answer "Yes", followed by 1009 knaves who all answer "No". Another possibility is that 1008 knights (who say "Yes") are interspersed among 1008 neither-knight-nor-knaves in such a way that they still say "No", e.g. every second person in line is a knight, followed by a neither-knight-nor-knave who (randomly) says "Yes", followed by a knave who says "No".
3. Solution 1. Yes, it is possible, via the following observations.

$$
\begin{aligned}
\underbrace{777 \ldots 7}_{n \text { digits }}=7 \cdot \underbrace{111 \ldots 1}_{n \text { digits }} & =\frac{7 \cdot\left(10^{n}-1\right)}{9} \\
& =\frac{7 \cdot 10^{n}-7}{9} \\
& =\frac{7 \cdot\left(\frac{77-7}{7}\right)^{n}-7}{7+\frac{7+7}{7}},
\end{aligned}
$$

where, for example, we can use $n=77$ or $n=14=7+7$. For $n=77$, the first expression has 777 s , whereas the final expression has only twelve 7s.

Note. A 2-digit number $(77-7) / 7=10$ was used in the representation above. Replacing $(77-7) / 7$ with $7+(7+7+7) / 7$ we can get an example with more 7 s , but without any 2 -digit number; just with a 1-digit number 7 involved.
Solution 2 by Budun Budunov. Since $\underbrace{77 \ldots 7}_{2 n \text { digits }}=\underbrace{77 \ldots 7}_{n \text { digits }} \cdot\left(10^{n}+1\right)$, we obtain

$$
\underbrace{77 \ldots 7}_{28 \text { digits }}=\underbrace{77 \ldots 7}_{14 \text { digits }} \cdot\left(\left(\frac{77-7}{7}\right)^{7+7}+\frac{7}{7}\right) .
$$

Note. Any number of the form $77 \ldots 7$ with more than one 7 (e.g. 77 and so on) can be used as the exponent in both this solution and Solution 1.
4. Solution 1 by William Steinberg. We will show that the smallest number of detectors needed to both determine if a ship is on the board and, if so, determine its exact location, is 16 . Our strategy is to first determine a lower bound, and then provide an example to show the lower bound is achievable and hence is the required minimum.
First we show that in every 2×3 subgrid we need at least 2 detectors.

Without loss of generality, orientate the subgrid so that it has 2 rows and 3 columns as shown. First suppose one detector is enough. If the detector is in a corner cell, without loss of generality the cell numbered 1 , then a ship can take up the remaining 2 columns undetected. If the detector is in a middle column cell, without loss of generality in cell 2 , then a ship can be detected but could take up the first two columns or the last 2 columns, i.e. its location cannot be exactly determined. Thus in every 2×3 subgrid we need at least 2 detectors.
As shown in the diagram below left the board can be divided into eight 2×3 rectangles and one square in the centre. For a ship to be detected and located with certainty, we require at least 2 detectors in each 2×3 rectangle. Thus, at least 16 detectors are needed.

The diagram above right shows an example with 16 detectors (indicated by $\times \mathrm{s}$) in the cells shown. If a ship is present it must intersect one of the 2×2 blocks of crossed squares. Indeed, a ship must intersect exactly one crossed square, exactly two crossed squares, or exactly four crossed squares. In each case the precise location of the ship or its absence can be determined.
Alternative detector configuration. The diagram below shows another example with 16 detectors.

Again, if a ship is present it must intersect at least one of the crossed squares. Indeed, a ship must intersect exactly one crossed square, exactly two crossed squares, or exactly three crossed squares. In each case the precise location of the ship or its absence can be determined.

Note 1. There are no other ways where 16 detectors can be located on the board.
Note 2. Even if it is known that the ship is definitely on the board, i.e. the board is not empty, 16 detectors are still needed to determine the location of the ship.
5. Solution 1. Let K be the midpoint of $A B$. Let Γ, Γ_{1} and Γ_{2} be the circumcircles of $A B C D, A B E$ and $D B E$, respectively, and note they have centres O, O_{1} and O_{2}, respectively. Since Γ and Γ_{1} intersect at points A and B, the line $O O_{1}$ is the perpendicular bisector of $A B$. Similarly, $O O_{2}$ is the perpendicular bisector of $B D$, and $O_{1} O_{2}$ is the perpendicular bisector of $B E$. Exploiting the axis of symmetry property of perpendicular bisectors, we have

$$
\begin{aligned}
\angle B O_{1} O_{2} & =\frac{1}{2} \angle B O_{1} E, \text { since } O_{1} O_{2} \text { is an axis of symmetry } \\
& =\angle B A E, \quad \text { since half central angle equals inscribed angle, in } \Gamma_{1} \\
& =\angle B A D, \quad \text { same angle } \\
& =\frac{1}{2} \angle B O D, \text { since inscribed angle equals half central angle, in } \Gamma \\
& =\angle B O O_{2}, \text { since } O O_{2} \text { is an axis of symmetry. }
\end{aligned}
$$

Thus, quadrilateral $B O_{1} O O_{2}$ is cyclic.

$$
\begin{aligned}
\angle K O_{1} B & =\frac{1}{2} \angle A O_{1} B, \text { since } K O_{1} \text { is perpendicular bisector of } A B \\
& =\angle A E B, \quad \text { since half central angle equals inscribed angle in } \Gamma \\
& =\angle C B E, \quad \text { alternate angles, since } A E \| B C \\
& =\angle C B O, \quad \text { same angle } \\
& =\angle B C O, \quad \text { since } B O C \text { is isosceles, legs } O B, O C \text { being radii of } \Gamma .
\end{aligned}
$$

Thus, quadrilateral $B O_{1} O C$ is cyclic, since $\angle K O_{1} B$ is the exterior angle opposite $\angle B C O$. But, the circumcircles of $B O_{1} O O_{2}$ and $B O_{1} O C$ are the same circle, since points B, O_{1}, O are common and three noncollinear points are sufficient to determine a circle. Hence, points O_{1}, O_{2}, O and C are concyclic.

Solution 2. As in Solution 1., let K be the midpoint of $A B$; and let Γ, Γ_{1} and Γ_{2} be the circumcircles of $A B C D, A B E$ and $D B E$, respectively, whose centres are O, O_{1} and O_{2}, respectively; and deduce that $O O_{1}, O O_{2}$ and $O_{1} O_{2}$ are the perpendicular bisectors of $A B, B D$ and $B E$, respectively. Also, let X be the point of intersection of $B D$ and $O O_{2}$, and let Y be the point of intersection of $B E$ and $O_{1} O_{2}$. We claim O_{1} lies on $A C$. Indeed,

$$
\begin{aligned}
\angle O_{1} A E & =\frac{1}{2}\left(180^{\circ}-\angle A O_{1} E\right), \text { since triangle } A O_{1} E \text { is isosceles } \\
& =90^{\circ}-\frac{1}{2} \angle A O_{1} E \\
& =90^{\circ}-\angle A B E, \text { since half central angle equals inscribed angle, in } \Gamma_{1} \\
& =90^{\circ}-\angle K B O, \text { same angle } \\
& =\angle K O B, \text { since } \angle B K O=90^{\circ} \text { in triangle } K O B \\
& =\frac{1}{2} \angle A O B, \text { since } O O_{1} \text { is an axis of symmetry } \\
& =\angle A D B, \text { since half central angle equals inscribed angle, in } \Gamma \\
& =\angle C A D, \text { since } A B C D \text { is an isosceles trapezium. }
\end{aligned}
$$

Hence, O_{1} lies on $A C$. Therefore,

$$
\begin{aligned}
\angle O C O_{1} & =\angle O C A, \quad \text { same angle } \\
& =\angle O B D, \quad \text { since } A B C D \text { is an isosceles trapezium } \\
& =\angle O B X, \quad \text { same angle } \\
& =90^{\circ}-\angle B O X, \text { since } \angle B X O=90^{\circ} \text { in triangle } B O X \\
& =90^{\circ}-\angle Y O O_{2}, \text { same angle } \\
& =\angle Y O_{2} O, \text { since } \angle O_{2} Y O=90^{\circ} \text { in triangle } Y O_{2} O_{1} \\
& =\angle O O_{2} O_{1} .
\end{aligned}
$$

and hence, $\mathrm{OCO}_{2} \mathrm{O}_{1}$ is cyclic, i.e. points O_{1}, O_{2}, O and C are concyclic.

Note. The fact that O_{1} lies on $A C$, as proved in Solution 2., can be proven in another way. Let diagonal $A C$ intersect the circumcircle of triangle $O A E$ at point P. We show that P coincides with O_{1}. Firstly,

$$
\begin{aligned}
\angle P E A & =\angle B E A-\angle O E P \\
& =\angle E B C-\angle O E P, \text { since } \angle B E A=\angle E B C \text { are alternate angles } \\
& =\angle O C B-\angle O E P, \text { since } \angle E B C=\angle O B C=\angle O C B \\
& =\angle O C B-\angle O C P, \text { since } \angle O E P=\angle O A P=\angle O C P \\
& =\angle A C B \\
& =\angle C A E, \quad \text { alternate angles } \\
& =\angle P A E, \quad \text { same angle. }
\end{aligned}
$$

Hence, triangle $A P E$ is isosceles, and so, $P A=P E$.
Since $\angle P O B$ is the exterior angle opposite $\angle P A E$ in cyclic quadrilateral $P A O E$,

$$
\angle B O P=\angle P A E=\angle P E A=\angle P O A
$$

Thus, with common side $P O$, and $O B=O A$ (radii of Γ), triangles $P O B$ and $P O A$ are congruent (by the SAS Rule).
Hence, $P B=P A=P E$, which means P is the circumcentre of triangle $A B E$ and so $P=O_{1}$.

6. (a) The required representation follows from the following identity,

$$
3 k-2=k^{3}-(k+3)^{3}+(3 k+5)^{2}=k^{3}+(-(k+3))^{3}+(3 k+5)^{2} .
$$

(b) First, we bring any given integer to the form of $3 k-2$ by subtracting an appropriate perfect cube, which can be 0,1 or -1 , and then apply the identity in (a).
7. Consider a graph, where vertices are towns and edges are roads.
(a) For a simple world, the graph is a tree, i.e. a connected simple graph without cycles (a cycle is a sequence of distinct adjacent vertices that begins and ends at the same vertex). Petya can choose any vertex. From any other vertex there exists exactly one path to the chosen vertex. On each path to the chosen town, Petya chooses all directions towards the chosen town. At the start, Petya
moves the tourist to the chosen town (from a neighbouring one). All roads to the chosen town are inbound. On his turn, Vasya changes the permitted direction of one of the roads. Then Petya moves the tourist along the road for which Vasya has changed the direction. All the roads to the town the tourist has just arrived at are inbound. Vasya can change the permitted direction of one of the roads again and Petya moves the tourist to a neighbouring town along that road. All roads to the new town the tourist has just arrived at are inbound again and the situation is repeated again and again. So Petya can always make a move and avoid defeat in a simple world no matter how Vasya plays.
(b) For a complex world, the graph is a connected graph with cycles. We use induction on the number of vertices (towns). The base case is a simple cycle. Denote vertices (towns) by A_{1}, A_{2}, \ldots. Assume that in a simple cycle $A_{1} A_{2} \ldots A_{n}$ all directions are arranged in some way and the tourist arrives at A_{2} from A_{1}. Then Vasya will change the direction of the edge the tourist hasn't used yet (i.e. in front of the tourist). In other words, Vasya's strategy should be to disallow the tourist from moving back. Assume the tourist has been able to get to A_{1}. Then Vasya changes the direction from outbound to inbound in front of the tourist so that no moves are available. Vasya wins.
Now, we consider the inductive step. The graph is not a simple cycle. Choose a cycle of the minimal length in the graph. Call the cycle with the minimal length $C . C$ is a simple graph and doesn't contain any edge inside itself. So there are vertices outside of C. Choose a vertex V of maximum distance from C. Denote a graph without V by $G . G$ is a connected graph and G contains a cycle. According to the inductive assumption, Vasya has winning strategy in G for any direction of edges in G. Thus, inside G Vasya follows his winning strategy. Since Petya loses in G, sooner or later the tourist will be forced to move to V. Then, Vasya will change the inbound edge (road) the tourist moved into V to be the outbound one. The tourist will depart from V and Vasya should make any acceptable move in G next. So the tourist is in G again, where Vasya has winning strategy. That means the tourist sooner or later will be forced to move to V again and the number of inbound edges to V be decreased every time when the tourist comes back to V. Since the number of edges (roads) to V is finite, the tourist finally will be unable to get to V and lose inevitably inside G anyway.
Thus, Vasya can win for sure in a complex world no matter how Petya plays.

